Climate Threat to the Planet* Implications for Energy Policy

Jim Hansen

4 July 2008

United Nations University Tokyo, Japan

*Any statements relating to policy are personal opinion

Global Warming Status

1. Knowledge Gap Between

- What is <u>Understood</u> (science)
- What is **Known** (public/policymakers)

2. Planetary Emergency

- Climate Inertia → Warming in Pipeline
- Tipping Points → Could Lose Control

3. Good News & Bad News

- Safe Level of CO₂ < 350 ppm
- Multiple Benefits of Solution

Basis of Understanding

- 1. Earth's Paleoclimate History
- 2. On-Going Climate Changes
- 3. Climate Models

Global Temperature Land-Ocean Index

Green Triangle = Volcano; Red Box = El Nino; Blue Semicircle= La Nina

United Nations Framework Convention on Climate Change

Aim is to stabilize greenhouse gas emissions...

"...at a level that would prevent dangerous anthropogenic interference with the climate system."

Metrics for "Dangerous" Change

Extermination of Animal & Plant Species

- 1. Extinction of Polar and Alpine Species
- 2. Unsustainable Migration Rates

Ice Sheet Disintegration: Global Sea Level

- 1. Long-Term Change from Paleoclimate Data
- 2. Ice Sheet Response Time

Regional Climate Disruptions

- 1. Increase of Extreme Events
- 2. Shifting Zones/Freshwater Shortages

Tipping Point Definitions

1. Tipping Level

- Climate forcing (greenhouse gas amount) reaches a point such that <u>no additional</u> forcing is required for large climate change and impacts

2. Point of No Return

- Climate system reaches a point with unstoppable irreversible climate impacts (irreversible on a practical time scale) Example: disintegration of large ice sheet

2007 Sea ice conditions in context

September Sea Ice Extent (1979–2007)

September 2007 4.28 million km²

Observations: Domingues, C.M. et al., Nature 453, 1090-1093, 2008. Model: Hansen, J. et al., Science 308, 1431-1435, 2005.

Arctic Sea Ice Criterion*

1. Restore Planetary Energy Balance

 \rightarrow CO₂: 385 ppm \rightarrow 325-355 ppm

2. Restore Sea Ice: Aim for -0.5 W/m²

 CO_2 : 385 ppm \rightarrow 300-325 ppm

Range based on uncertainty in present planetary energy imbalance (between 0.5 and 1 W/m²)

* Assuming near-balance among non-CO₂ forcings

Greenland Total Melt Area -

2007 value exceeds last maximum by 10%

Konrad Steffen and Russell Huff, CIRES, University of Colorado at Boulder

Surface Melt on Greenland

Melt descending into a moulin, a vertical shaft carrying water to ice sheet base.

Source: Roger Braithwaite, University of Manchester (UK)

Jakobshavn Ice Stream in Greenland

Discharge from major Greenland ice streams is accelerating markedly.

Source: Prof. Konrad Steffen,

Univ. of Colorado

Greenland Mass Loss – From Gravity Satellite

Greenland ice-sheet: rate of change from airborne laser-altimeter surveys (green), airborne/satellite laseraltimeter surveys (purple), mass-budget calculations (red), temporal changes in gravity (blue).

Sources (corresponding to numbers on rectangles): 1 and 2 Krabill and others 200016 and 2004[; 3 Thomas and others 200617; 4 Zwally and others 20055; 5 to 7 Rignot and Kanagaratnam 200618; 8 and 9 Velicogna and Wahr 2005[and 2006b; 11 Chen and others 2006]; 10 Ramillien and others 200632; 12 Luthke and others 2006[

Sea Level Criterion*

1. Prior Interglacial Periods

 \rightarrow CO₂ <~ 300 ppm

2. Cenozoic Era

 \rightarrow CO₂ <~ 300 ppm

3. Ice Sheet Observations

 \rightarrow CO₂ < 385 ppm

*Assuming near-balance among non-CO₂ forcings

Pier on Lake Mead.

Rongbuk Glacier

Rongbuk glacier in 1968 (top) and 2007. The largest glacier on Mount Everest's northern slopes feeds Rongbuk River.

Black bar: ice loss in 1973-1998. Curve:years until ice gone, at that loss rate. Paul, F. et al., Geophys. Res. Lett. 31, L21402, 2004.

Stresses on Coral Reefs

Coral Reef off Fiji (Photo: Kevin Roland)

Assessment of Target CO₂

Phenomenon

Target CO₂ (ppm)

1. Arctic Sea Ice

300-325

2. Ice Sheets/Sea Level

300-350

3. Shifting Climatic Zones

300-350

4. Alpine Water Supplies

300-350

5. Avoid Ocean Acidification

300-350

 \rightarrow Initial Target CO₂ = 350* ppm

*assumes CH₄, O₃, Black Soot decrease

Target CO₂:

< 350 ppm

To preserve creation, the planet on which civilization developed

The fraction of CO₂ remaining in the air, after emission by fossil fuel burning, declines rapidly at first, but 1/3 remains in the air after a century and 1/5 after a millennium (*Atmos. Chem. Phys.* **7**, 2287-2312, 2007).

Initial Target CO₂: 350 ppm

Technically Feasible

(but not if business-as-usual continues)

Quick Coal Phase-Out Critical

(long lifetime of atmospheric CO₂) (must halt construction of any new coal plants that do not capture & store CO₂)

Fossil Fuel CO₂ Emissions

(a) 2007 Annual Emissions (b) 1751-2007 Cumulative Emissions

Russia

U.Kingdom

Germany

U.S.A.

China

India

Japan

Canada

China

Russia

U.S.A.

Japan

Germany

India

Canada

U.Kingdom

Per Capita Fossil Fuel CO₂ Emissions

Source of Fossil Fuel CO₂

(a) Today's Emissions (b) In the Air Today

- (a) Fraction of each fossil fuel in 2007 CO2 emissions
- (b) Fraction of each in today's airborne CO2 amount

Coal Fraction of Fossil Fuel CO₂ Emissions

Fraction = Coal / (Coal + Oil + Natural Gas)

"Free Will" Alternative

1. Phase Out Coal CO₂ Emissions

- by 2025/2030 developed/developing countries

2. Rising Carbon Price

- discourages unconventional fossil fuels & extraction of every last drop of oil (Arctic, etc.)

3. Soil & Biosphere CO₂ Sequestration

- improved farming & forestry practices

4. Reduce non-CO₂ Forcings

- reduce CH₄, O₃, trace gases, black soot

Carbon Tax & 100% Dividend

1. Tax Large & Growing (but get it in place!)

- tap efficiency potential & life style choices

2. Entire Tax Returned

- equal monthly deposits in bank accounts

3. Limited Government Role

- keep hands off money!
- eliminate fossil subsidies
- let marketplace choose winners
- change profit motivation of utilities
- watch U.S. modernize & emissions fall!

Key Elements in Transformation

Low-Loss Electric Grid Clean Energy by 2020 (West) & 2030 Allows Renewable Energy Ascendancy

Carbon Tax and 100% Dividend Tax at First Sale of Coal/Oil/Gas Tax Can Rise & Spur Transformations "100% or Fight! No Alligator-Shoes!"

Basic ConflictFossil Fuel Special Interests vs Young People & Nature (Animals)

Fossil Interests: God-given fact that all fossil fuels will be burned (no free will)

Young People: Hey! Not so fast! Nice planet you are leaving us!

What are the Odds?

Fossil Interests: have influence in capitals world-wide

Young People: need to organize, enlist others (parents, e.g.), impact elections

Animals: not much help (don't vote, don't talk)

The Challenge

We can avoid destroying creation! (+cleaner planet, + good jobs!)

We have to figure out how to live without fossil fuels someday...

Why not now?

What's the Problem?*

- 1. No Strategic Approach %CO₂ Reduction Approach Doomed
- 2. No Leadership for Planet & Life Businesses Rule in Capitals
- 3. Greenwash Replaces Strategy

*Just my opinions, of course

Web Site

www.columbia.edu/~jeh1 includes

Letter to Prime Minister Fukuda

Global Warming Twenty Years Later: Tipping Points Near (today's statement)

Target Atmospheric CO₂: Where Should Humanity Aim?